Cómo encontrar códigos de descuento para ahorrar en tus viajes

Hace unos meses mostraba en un artículo gran cantidad de consejos y trucos para viajar al mejor precio, consiguiendo buenos vuelos, coches de alquiler, alojamientos y viajes sin tener que pagar de más. Uno de mis consejo era el de hacer uso de los códigos de descuento, y hoy, en este artículo, me gustaría ampliar un poco más de información sobre cómo usarlos en viajes y cómo nos van a ayudar a ahorrarnos unos cuantos euros de una forma muy fácil.

Lo único malo en Internet es que no estamos comprando vuelos, alquilando coches o reservando hoteles todas las semanas (si alguien lo hace ¡que levante la mano y lo ponga en los comentarios!), por lo que no recibimos códigos de descuento tras la compra. Algunas veces los envían por email, pero entre los filtros anti-spam y el que no sabemos cuándo vamos a usarlos, al final siempre terminamos por perderlos.

No hay problema. Antes de hacer cualquier reserva, basta con introducir en nuestro buscador favorito el nombre de la empresa seguido de códigos descuento (Ej: “Vueling códigos descuento”), y tendremos un montón de páginas a nuestra disposición que nos darán diferentes códigos a usar. Seguro que esto lo has hecho alguna vez, y acto seguido habrás visto el odiado mensaje de este código descuento no es válido. “¿Por qué me pasan estas cosas a mí?”, pensarás.Dormir en Palma de Mallorca por 3€ la noche es posible

Sigue sin haber problema. A tu ayuda acuden páginas como Tucodigopromocional, en la que obtener códigos fiables y verificados con los que ahorrar en tus viajes sin falta de mirarte medio Internet (sería buena idea añadirla a favoritos). En esta página hay cupones por valor de 10€ de descuento directo en Vueling, 10% de descuento en los excelentes hoteles Barceló, o en paquetes de Hotelopia. Hay muchos más relacionados con los viajes, pero te dejo a ti que encuentres los que más te gusten.

A mí, estos cupones me siguen pareciendo una de las formas más sencillas de ahorrar euros en nuestros viajes, por eso nunca me olvido de buscarlos antes de reservar cualquier viaje. Así llegué a alojarme durante dos días en un apartamento en Palma de Mallorca por 3€ en total (con cupón de descuento de 23€ en AirBnB), o a recibir algún producto comprado por Internet mucho más rápido gracias a un cupón especial.

Acuérdate siempre de los cupones descuento y viaja gastando menos. Consejo de viajero

Métodos para conseguir dinero rápido, ¿los conocías?

El momento económico actual ha dejado en una situación muy delicada a muchos ciudadanos y empresas. Además, la crisis del sector bancaria ha hecho que las fuentes de crédito y liquidez estén completamente agotadas y sean inaccesibles para la mayoría. Ahora se abren muchos interrogantes sobre cómo se puede acceder a préstamos por parte de aquellos que necesitan un empujón para afrontar sus gastos o, por otra parte, para aquellos que quieren iniciar o reflotar un negocio.

Una de las soluciones más solicitada y socorrida son los créditos rápidos. Estos créditos suponen una fuente de dinero rápido muy fiable y, sobre todo, muy inmediata, pero hay que tener algunos factores en cuenta antes de pedir un préstamo de estas características. La facilidad de acceso que estos créditos tienen nos obliga a reflexionar de manera preliminar sobre cuál es el grado de necesidad que tenemos de un préstamo así. Parece una obviedad, pero tendremos que meditar mucho sobre si realmente es necesario y sobre si tenemos la seguridad de poder devolverlo para no generar más problemas financieros de los que queremos mitigar con el crédito. Muchas de estas empresas ofrecen prórrogas o asesoramiento en caso de tener algún problema con el reembolso del dinero, pero consideramos una mejor opción el haber pensado previamente en este problema para evitar tenerlo. Otro factor muy determinante, una de las claves del éxito de los créditos rápido, es que no se necesita aval de ningún tipo ni una nómina que lo respalde.

Este tipo de financiación suele ser a través de portales en línea. Al tratarse de una gestión por internet se acelera mucho el proceso y hace que el trámite sea prácticamente inmediato, siendo este el rasgo más característico y definitorio de estos créditos que los hace ser de los más solicitados. Además, estas páginas web suelen contar con una calculadora que nos permitirá elegir el tiempo del que queremos disponer para devolver el préstamo, mostrándonos en el acto la cantidad de intereses que tenemos que pagar y decidir así si nos conviene o no solicitarlo de manera sencilla.

Es difícil, como decíamos al principio, encontrar fuentes de financiación, más contando con el factor de la rapidez, es por eso que estos créditos rápidos suponen una alternativa más que satisfactoria para muchos particulares y para muchos gerentes de pequeñas y medianas empresas.

¿Coincidencia?

Comparen los lectores el texto en este enlace: Apolonio, de Miguel de Guzmán...

... con este otro: Apolonio, unos años más tarde.



Todos los axiomas

Después de años de trabajo discontinuo, finalmente, esta misma tarde he terminado de escanear y subir al blog correspondiente todos los números publicados de la revista Axioma.

Cómo visualizar la Hipótesis del Continuo

Una visualización de la Hipótesis del Continuo
(Basado fuertemente en una idea del filósofo Chris Freiling)

Tomemos un cuadrado... que en realidad puede ser cualquiera, pero, para facilitar la explicación, supondremos que es el cuadrado cuyos vértices son los puntos (0,0), (0,1), (1,0) y (1,1). A su vez, sobre cada punto (t, 0),con t entre 0 y 1, dibujaremos un segmento vertical de longitud 1, y en cada uno de esos segmentos pintaremos algunos puntos.
Aunque en el segmento que se muestra en el dibujo sólo hay "pintada" una cantidad finita de puntos, supondremos que, en realidad, en cada segmento vertical hemos pintado una cantidad numerable de puntos. Tenemos, entonces, el siguiente teorema:

La Hipótesis del Continuo es falsa si y sólo si, no importa cómo se decida pintar los puntos, siempre existirán números x e y (ambos entre 0 y 1) tales que los puntos (x,y) y (y,x) quedan sin pintar. En otras palabras, la Hipótesis del Continuo es equivalente a que existe una manera de pintar los puntos para la cual en toda pareja (x,y) y (y,x), al menos uno de ambos puntos queda pintado.

Vamos a demostrar este teorema.

Supongamos primero que la Hipótesis del Continuo es verdadera. Es posible, entonces, definir en el intervalo [0,1] un buen orden equivalente a $\Omega $ (para más detalles, véase "El Omegón y todo eso,.." en este mismo blog). Pintamos entonces todos los puntos (x,y) tales que es menor o igual que x según el buen orden antes indicado. Por lo tanto, sobre cada x ha quedado pintada una cantidad numerable de puntos, y siempre sucede que, de (x,y) o (y,x), al menos uno de los dos queda pintado.

Recíprocamente, supongamos que la Hipótesis del Continuo sea falsa; y que los puntos han sido pintados de alguna manera. Como la Hipótesis del Continuo es falsa, podemos definir en [0,1] un buen orden equivalente a un ordinal mayor que $\Omega $.

Pensemos ahora en todos los puntos (x,y) pintados para los cuales x es, según el buen orden mencionado, menor que $\Omega $. Como las segundas coordenadas de estos puntos forman un conjunto de cardinal $\aleph _1$ entonces existe un $y_0$ que no pertenece a él (porque estamos suponiendo que [0,1] tiene cardinal mayor que $\aleph _1$). Es decir, para todo $x < \Omega $, $(x,y_0)$ no está pintado.

Pero el conjunto de todos los $x < \Omega $ tiene cardinal $\aleph _1$ y los puntos pintados sobre $y_0$ forman un conjunto numerable. Luego, existe un $x_0 < \Omega $ tal que $(y_0,x_0)$ no está pintado. Pero, por lo dicho más arriba, $(x_0,y_0)$ tampoco está pintado. Esto finaliza la demostración del teorema.

Los préstamos rápidos superan a la banca

El sector de microcréditos moviliza un volumen aproximado de 200 millones de euros y su índice de aprobación es de 50%

Los préstamos rápidos son aquellos solicitados por prestamistas privados, generalmente por plataformas digitales utilizando Internet, por una cantidad pequeña, de hasta 600 euros, para ser cancelados en un lapso determinado y corto, de quizá un máximo de 30 días, con el añadido de unos intereses que suelen variar entre el 28 y 37%.

Este tipo de créditos aún es un producto novedoso en España, pero poco a poco se ha vuelto una verdadera alternativa de financiación, en gran parte porque el número de prestamistas privados ha aumentado en forma considerable, haciendo frente a una banca tradicional que desde hace años atrás, más específicamente con el inicio de la crisis, ha disminuido la concesión de créditos personales. A pesar de que en el segundo trimestre del presente año la banca ha aumentado la aprobación de créditos en estas Instituciones a un 1,2%, aún es una cantidad muy pequeña frente a la gran cantidad de personas que necesitan una solución rápida y efectiva a sus imprevistos.

En cambio, en el sector de préstamos rápidos ha habido un aumento de solicitudes y según un nforme otorgado por la Asociación Española de Micropréstamos, AEMIP, que fue creada dos años atrás y que en la actualidad agrupa más de la mitad de empresas de esta rama, en aras a la protección del consumidor por su adopción de código de buenas prácticas, este sector moviliza un volumen aproximado de 200 millones de euros, y se calcula que hay un índice de aprobación del 50% en las solicitudes.

Se predice que en los años venideros habrá una proliferación de este tipo de préstamos, y la confianza se fortalecerá en su uso, en especial si se trata de empresas reguladas por la Asociación Española de Micropréstamos. En la actualidad lo que sí es cierto es que poco a poco este sector está ganando mayor fuerza como un nuevo medio de financiación ya que son muchas las ventajas que ofrece, entre ellas la oportunidad de ser utilizadas como operaciones rápidas, que no requieren mayor papeleo y que pueden hacerse sin moverse de casa, además que se cuenta con la transparencia del crédito en sí, ya que desde el momento de su solicitud se sabe el monto total a prestar y a devolver.

Los axiomas de Peano: compilación y, por ahora, final.

En esta entrada recopilo todo lo que he venido escribiendo en estos últimos meses sobre los axiomas de Peano, a la vez que agrego varios resultados más.

Los axiomas de Peano
Estos axiomas se refieren a ciertos objetos a los que llamaremos números naturales y tienen como elementos primitivos al número 0, que es un número natural, a la función sucesor, que indicamos con la letra S, y a las operaciones de suma y producto. Los axiomas son:

Axioma 0: El sucesor de un número natural es siempre un número natural, la suma y el producto de dos números naturales es siempre un número natural.
Axioma 1: Para todo n, $S(n)\neq 0$.
Axioma 2: Si S(n) = S(m) entonces n = m.
Axioma 3: n + 0 = n.
Axioma 4: n + S(m) = S(n + m).
Axioma 5: n.0 = 0.
Axioma 6: n.S(m) = n.m + n.
Axioma 7 (Esquema de inducción): Para cada fórmula P(n), si puede probarse que vale P(0) y también que vale "P(n) $\Rightarrow $ P(S(n))" entonces P(n) vale para todo n.

Teoremas:
Estos son algunos teoremas que se deducen de los axiomas de Peano.

Teorema 1: 0 + n = n.
Demostración: 
Aplicamos el esquema de inducción.
Para n = 0 la afirmación vale por el axioma 3.
Tenemos que probar que "0 + n = n $\Rightarrow $ 0 + S(n) = S(n)". Veamos que es así:
Si 0 + n = n entonces 0 + S(n) = S(0 + n) = S(n).

Teorema 2: n + S(m) = m + S(n).
Demostración:
Hacemos inducción en m.
Para m = 0 la afirmación vale porque:
n + S(0) = S(n + 0) = S(n) = 0 + S(n), esto último por el teorema 1.
Veamos que n + S(m) = m + S(n) implica n + S(S(m)) = S(m) + S(n).
S(m) + S(n) =
= S(m + S(n))     (ax. 4)
= S(n + S(m))     (hipótesis)
n + S(S(m))     (ax. 4).

Teorema 3: n + m = m + n
(Es decir, la suma es conmutativa).
Demostración:
Fijamos n y hacemos inducción en m.
Para m = 0 vale ya que n + 0 = n = 0 + n, por axioma 3 y teorema 1.
Tenemos que probar que n + m = m + n implica n + S(m) = S(m) + n, veamos que es así:
n + S(m) =
= S(n + m)     (ax. 4)
= S(m + n)     (hipótesis)
m + S(n)     (ax. 4)
= S(m) + n     (teo. 2).

Teorema 4: (n + m) + k = n + (m + k)
(Es decir, la suma es asociativa).
Demostración:
Fijamos n y m, y hacemos inducción en k.
Para k = 0 vale ya que:
(n + m) + 0 = n + m = n + (m + 0).
Tenemos que probar que (n + m) + k = n + (m + k) implica (n + m) + S(k) = n + (m + S(k)). Veamos que es así:
(n + m) + S(k) =
= S((n + m) + k)     (ax. 4)
= S(n + (m + k))     (hipótesis)
n + S(m + k)     (ax. 4)
n + (m + S(k))    (ax. 4).

Teorema 5: 0.n = 0
(Recuérdese que el axioma 5 afirma que n.0 = 0).
Demostración:
Hacemos inducción en n. Para n = 0 vale por el axioma 5. Tenemos que probar que 0.n = 0 implica 0.S(n) = 0. Veámoslo: 0.S(n) = 0.n + 0 = 0 + 0 = 0.

Teorema 6: S(n).m = n.m + m
Demostración:
Fijamos n y hacemos inducción en m. Para m = 0 vale porque: S(n).0 = 0 = 0 + 0 = n.0 + 0.
Tenemos que probar que S(n).m = n.m + m implica S(n).S(m) = n.S(m) + S(m). Veámoslo:
S(n).S(m) =
= S(n).m + S(n)     (por el ax. 6)
= (n.m + m) + S(n)     (hipótesis)
n.m + (m + S(m))     (teo. 4)
n.m + (S(m) + n)     (teo. 2)
n.m + (n + S(m))     (teo. 3)
= (n.m + n) + S(m)     (teo. 4)
n.S(m) + S(m)     (ax. 6)

Teorema 7: n.m = m.n (el producto es conmutativo).
Demostración:
Fijamos n y hacemos inducción en m. Para m = 0 vale porque n.0 = 0 = 0.n.
Tenemos que probar que n.m = m.n implica n.S(m) = S(m).n. Veámoslo:
n.S(m) =
n.m + n     (ax. 6)
m.n + n     (hipótesis)
= S(m).n     (teo. 6).

Teorema 8: n.(m + k) = n.m + n.k.
(Es decir, vale la propiedad distributiva).
Demostración:
Fijamos n y m, y hacemos inducción en k. Para k = 0 vale por los axiomas 3 y 5.
Tenemos que probar que n.(m + k) = n.m + n.k implica n.(m + S(k)) = n.m + n.S(k). Veámoslo:
n.m + n.S(k) =
n.m + (n.k + n)     (ax. 6)
= (n.m + n.k) + n     (teo. 4)
n.(m + k) + n     (hipótesis)
n.S(m + k)     (ax. 6)
n.(m + S(k))    (ax. 4)

Teorema 9: (n.m).k = n.(m.k).
(Es decir, el producto es asociativo).
Demostración:
Fijamos n y m, y hacemos inducción en k. Para k = 0 vale por el axioma 5.
Tenemos que probar que si (n.m).k = n.(m.k). entonces (n.m).S(k) = n.(m.S(k)).
Veámoslo:
(n.m).S(k) =
= (n.m).k + n.m     (ax.6)
n.(m.k) + n.m     (hipótesis)
n.(m.k + m)     (teo. 8)
n.(m.S(k))     (ax. 6).

Definición: 1 = S(0).

Teorema 10: $1\neq 0$.
(Es consecuencia inmediata del axioma 1.)

Teorema 11: n + 1 = S(n).
Demostración:
n + 1 = 
= n + S(0)  (definición)
= S(+ 0)  (Ax. 4)
= S(n)   (Ax. 3)

Teorema 12: 1.n = n.
Demostración:
Por inducción. Para n = 0 vale por el axioma 5. 
Veamos que 1.n = n implica 1.S(n) = S(n).
1.S(n) = 
= 1.n + 1  (Ax. 6)
n  + 1  (por hipótesis)
= S(n)  (Teo. 11).

Definiciones:
2 = S(1)
3 = S(2)
4 = S(3)
5 = S(4)
etc.

Veamos ahora un nuevo teorema:

Teorema 13: Si $n\neq 0$ entonces existe m tal que S(m) = n.
Demostración:
El enunciado que queremos demostrar equivale a $\forall n (n=0 \vee \exists m(S(m)=n))$, y este último enunciado se prueba fácilmente por inducción. En efecto, para n = 0 vale, y supuesto que vale para n entonces es claro que también vale para S(n) ya que si n = S(m) entonces S(n) = SS(m).

Teorema 13 bis: Si $n\neq 0$ entonces n se obtiene aplicando al 0 la función S sucesivamente una cantidad finita de veces.
Demostración:
Por inducción. Para n = 0 vale (el antecedente de la implicación es falso). Supuesto que vale para n es inmediato que vale para S(n) ya que si n = SS...S(0) entonces S(n) = SSS...S(0) (una S más).

Teorema 13 ter: Si una afirmación vale para 0, S(0), SS(0), SSS(0), SSSS(0),... entonces la afirmación vale para todo n.
Demostración:
Sea n cualquiera, entonces, por el teorema anterior, o bien n = 0, o bien n = SS...S(0), en cualquiera de los dos casos, por hipótesis, la afirmación vale para n.

¿Cree usted que las tres versiones del teorema 13 son válidos?

Sucede que el enunciado y la demostración del primer teorema respetan las restricciones que impone la lógica de primer orden, mientras que los otros dos no las respetan (se enmarcan en la lógica de segundo orden). ¿Es importante esta distinción? En parte sí, porque el teorema de Gödel sólo vale en teorías basadas en la lógica de primer orden. De hecho, si se acepta la validez del teorema "13 ter" entonces el teorema de Gödel pasa a ser directamente falso (o, si se quiere, es falso si se acepta en la matemática ese tipo de razonamiento). Por así decirlo, la validez del teorema de Gödel termina en la delgada línea que separa el teorema 13 del teorema 13 bis. Vuelvo a preguntar: ¿cree usted que los tres teoremas son válidos?

Una primera conclusión es (o debería ser) que el teorema de Gödel involucra ciertas sutilezas que impiden que sea discutido a la ligera, y que refutan cualquier análisis que no tome en cuenta adecuadamente sus complejidades técnicas.

Por otra pare, yo sí creo que los tres teoremas son válidos, por lo que esta situación me convence (al menos a mí) de que la lógica que usan naturalmente los matemáticos no es (a diferencia de los que los lógicos suelen sostener) la lógica de primer orden, sino la lógica de segundo orden. La "verdadera lógica", digo yo, es la de segundo orden, la otra es una lógica muy apta para ser estudiada, pero no es la que usamos realmente para razonar.

¿Es falso entonces el teorema de Gödel? No, el teorema de Gódel sigue siendo válido en la teorías basadas en la lógica de primer orden, es decir, tiene una aplicación específica que, según yo lo veo, no alcanza a toda la matemática en su conjunto.

Teorema 14: Si n + m = 0 entonces n = 0 y m = 0.
Demostración:
Si $m\neq 0$ entonces, por el teorema 13, m = Sk para algún k, luego n + Sk = 0. Deducimos así, por el axioma 4, que S(n + k) = 0, pero esto es un absurdo porque contradice el axioma 1. Luego, debe ser m = 0; fácilmente, del axioma 3, se sigue que n = 0.

Teorema 15: Si n + m = n + k entonces m = k.
Demostración:
Lo hacemos por inducción en n. Para n = 0 es fácil ver que vale (por el axioma 3).
Paso inductivo:
Supongamos que Sn + m = Sn + k, entonces, por el axioma 3 y el teorema 3, tenemos que S(n + m) = S(n + k). Luego, por axioma 2, n + m = n + k, y por hipótesis inductiva m = k.

Otros teoremas que pueden probarse, las demostraciones que faltan se dejan como ejercicio para los lectores:

Teorema 16: Si n.m = 0 entonces n = 0 o m = 0.
Demostración:
La afirmación es equivalente a: Si n.m = 0 y $m\neq 0$ entonces n = 0. Probémoslo.
Si $m\neq 0$ entonces, por el teorema 13, existe k tal que S(k) = m. Luego:
0 = n.S(k) = n.k + n (por axioma 6).
Entonces n.k + n = 0 y, por el teorema 14, deducimos que n = 0, como queríamos probar.

Comentario: ¿No podríamos haber dicho que n.m = n + n + n + ... + n (m veces) para luego aplicar directamente el teorema 14? Una vez más, este razonamiento, perfectamente aceptable en la "matemática de todos los días", no lo es, en cambio, en el contexto de la lógica de primer orden (que es la que presupone el teorema de Gödel),

Teorema 17: Si n.m = n.k y $n\neq 0$ entonces m = k.
Demostración:
La afirmación  a demostrar es:
Para todo m vale: Para todo n y k, si n.m = n.k y $n\neq 0$ entonces m = k.
Probémosla por inducción en m.
Para m = 0, hay que probar que si n.0 = n.k y $n\neq 0$ entonce k = 0; esto se deduce del teorema anterior.
Supuesto que vale para m vamos a probarlo para S(m). Tenemos entonces que n.S(m) = n.k.
Comencemos observando que $k\neq 0$, en efecto, si k = 0 entonces n.S(m) = 0, de donde se deduce que n = 0 o S(m) = 0, lo cual es absurdo. Por lo tanto, existe r tal que S(r) = k, y entonces:
n.S(m) = n.k
n.S(m) = n.S(r)
n.m + n = n.r + n
n.m = n.r   (Teo. 15)
m = r   (Hipótesis inductiva)
S(m) = S(r)
S(m) = k, que es lo que queríamos probar.

Teorema 18: Si n + m = 1 y $n\neq 0$ entonces m = 0.
(De este teorema se deduce inmediatamente que si la suma de dos números naturales es 1 entonces uno de de ellos es 0 y el otro es 1.)
Demostración:
Supongamos, por el absurdo, que $m\neq 0$, entonces existe k tal que S(k) = m. En consecuencia:
n + m = 1
n + S(k) = 1
S(n + k) = 1
S(n + k) = S(0)
n + k = 0
Entonces, por el teorema 14, n = 0, lo que contradice la hipótesis.

Teorema 19: Si n.m = 1 entonces n = m = 1.

Teorema 20: 1 + 1 = 2.
Demostración:
1 + 1 = 1 + S(0) = S(1 + 0) = S(1) = 2.

Teorema 21: $1\neq 2$.
Demostración:
Si 2 = 1 entonces S(S(0)) = S(0), luego (por el axioma 2), S(0) = 0, lo que contradice el axioma 1.

Teorema 22: No existe n tal que 2.n = 1.
Demostración:
Supongamos que sí. Luego:
2.n = 1
(1 + 1).n = 1   (teo. 20)
n + n = 1  (teo. 8 y 12)
Por el teorema 18, se sigue que n = 0 o n = 1,
Si n = 0, llegamos a que 0 = 1, lo que contradice el teorema 10.
Si n = 1, llegamos a que 2 = 1, lo que contradice el teorema 21.
Deducimos así que n no existe.

Teorema 23: Si n + m = 2 y $n\neq 0$ y $m\neq 0$ entonces n = m = 1.

Teorema 24: 2 es primo, es decir, si n.m = 2 y $m\neq 1$ entonces m = 2.

Teorema 25: $4\neq 2$.

(*) Teorema 26: n = SS....S(0), donde la S se repite n veces.

Como en el caso del teorema 13, bordeamos aquí las ideas del teorema de Gödel. El teorema 26 ni siquiera puede enunciarse en la lógica de primer orden de los axiomas de Peano, por lo que "escapa" a los métodos de demostración que supone el teorema de Gödel. De hecho, si intentan demostrarlo, verán que se debe hacer inducción, no sólo en n en tanto "número natural", sino también en n en tanto "cantidad de veces que aparece la letra S". ¿Pero acaso no son la misma cosa? ¿Los números naturales no son cantidades? En el contexto de los axiomas de Peano la respuesta es no, "número" no es "cantidad", sino que "número" es "símbolo que cumple los axiomas". Es por eso que, a mi modesto entender, como dije más arriba, la lógica de primer orden (tan defendida por los lógicos matemáticos) es insuficiente para abarcar la riqueza del razonamiento matemático.

Es también interesante notar que en la lógica de primer orden sí puede demostrarse que
1 = S(0)
2 = SS(0)
3 = SSS(0)
etc.

Es decir, puede probarse cada instancia del teorema 26, pero no el teorema en toda su generalidad.

Teorema 27: 3 es primo.

Teorema 28: 2.2 = 4 (luego, 4 no es primo).
Demostración:
2.2 = 2.S(1) = 2.1 + 2 = 2 + 2.
2 + 2 = 2 + S(1) = S(2 + 1) = S(S(2)) = S(3) = 4.

Teorema 29: Si $n\neq m$ entonces existe k tal que n + k = m o m + k = n.

Definición: $n\leq m$ si y sólo si existe k tal que n + k = m.
n < m si y sólo si $n\leq m$ y $n\neq m$.

Teorema 30: Para todo n y m vale que $n\leq m$ o $m\leq n$.

Teorema 31: Si $n\leq m$ y $m\leq n$ entonces n = m.

Teorema 32: Si $n\leq m$ entonces $Sn\leq Sm$.

Teorema 33: Si $n\leq m$ y $m\leq k$ entonces $n\leq k$.

Teorema 34: Para todo n, $0\leq n$.

Teorema 35: Para todo n, no existe k tal que n < k < Sn.

Teorema 36: Si n entonces $Sn\leq m$.

Teorema 37: Si $n\leq m$ entonces para todo k, $n + k\leq m + k$.

Teorema 38: Si $n\leq m$ entonces para todo k, $nk\leq mk$.

Fin (por ahora).