jueves, 29 de agosto de 2013

CRUZ Y CRISTIANOS

"Puede suceder que los cristianos sean enemigos de la Cruz de Cristo, aunque la lleven en procesión"  (Cardenal Martini)

miércoles, 28 de agosto de 2013

RENOVAR LA MENTE

"RENOVAR LA MENTE QUIERE DECIR RENOVAR EL MODO DE VER LA REALIDAD"

martes, 27 de agosto de 2013

CAER

"SI EL SER HUMANO NO TIENDE MÁS HACIA LO ALTO, CAE MÁS ABAJO"

lunes, 26 de agosto de 2013

domingo, 25 de agosto de 2013

CORRER

En el comienzo de una semana dedicada al silencio, la soledad y la oración no está mal esta motivación desde la música corriendo y corriendo.....  

viernes, 23 de agosto de 2013

OFRECER

Siempre todos tenemos algo que ofrecer.

Descubren enormes plumas submarinas de hierro de respiraderos hidrotermales en el Atlántico Sur



[Gallery Photo]

Analyses of some of the seawater samples gathered during the CoFeMUG expedition revealed a plume of iron and manganese released to the South Atlantic Ocean along the Mid-Atlantic Ridge, where as yet undiscovered hydrothermal vents are located.  The figure plots ocean depth and sampling location, with elevated iron concentrations indicated by warm colors (red, orange, etc).  The higher iron concentrations persist for more than 1,000 km, which suggests that hydrothermal vents serve as important iron sources. (Figure by Abigail Noble, Woods Hole Oceanographic Institution)


The map shows the location of the ocean section where the plume was detected, highlighted in red. (Figure by Abigail Noble, Woods Hole Oceanographic Institution) [Gallery Photo]

Científicos han hecho un asombroso descubrimiento en las profundidades de las aguas del Océano Atlántico Sur. Han encontrado una gran columna de hierro de más de 600 millas de largo que salía de las chimeneas hidrotermales. El hallazgo no sólo pone en duda las estimaciones anteriores de la abundancia de hierro, sino también puede cuestionar los supuestos acerca de las fuentes de hierro en los mares del mundo.

Los investigadores en realidad no iban a buscar hierro en el Atlántico. En cambio, querían mapear la composición química y la vida microbiana a lo largo de una ruta entre Brasil y Namibia. Y yendo por esta ruta en barco, se tomaron muestras del agua de mar a intervalos frecuentes y múltiples profundidades. Esto les permitió recopilar información acerca de las diferentes áreas, y aprender más acerca de la composición química del océano.




A lo largo de su recorrido, los investigadores cruzaron la Cordillera del Atlántico Medio. Esta banda de montañas y valles se localizan a lo largo del fondo del Océano Atlántico, desde el Ártico hasta la Antártida. A lo largo de esta cordillera están las fuentes hidrotermales, fisuras en la corteza terrestre. Sin embargo, estos respiraderos aún no se han estudiado ampliamente pero se cree que en las dorslales de lenta expansión son menos activos que en los que se extienden rápidamente.

Después de analizar sus muestras, sin embargo, los investigadores encontraron niveles extremadamente altos de hierro y manganeso. Una vez que se mapeo de dónde procedían estas muestras, encontraron que las muestras formaba"Nunca habíamos visto algo así", dijo Mak Saito, uno de los investigadores, en un comunicado de prensa. "Estábamos en una especie de shock al ver este gran ojo de buey en el medio del Océano Atlántico Sur. No sabíamos muy bien qué hacer con él, porque iba en contra de muchas de nuestras expectativas".


Las conclusiones de hecho parecen demostrar que, a diferencia de las creencias anteriores, las dorsales de expansión lenta no son deficientes en hierro. Además, plantea interrogantes sobre el uso de helio como un indicador de flujo de hierro en los respiraderos hidrotermales. Puesto que el hierro es un elemento fundamental para la vida del océano, esto tiene enormes implicaciones para futuros estudios.n una columna distinta.


"Tenemos que entender que el hierro se encuentra en el océano y después entender con certeza el papel del hierro en el ciclo del carbono marino", dijo Saito en un comunicado de prensa.


Actualmente, los investigadores planean llevar a cabo estudios futuros que pueden revelar la forma exacta y la extensión de la pluma. Esto podría mostrar exactamente qué parte de su hierro y otros micronutrientes persisten y se elevan a la superficie, lo que podría revelar un poco más sobre el ciclo de nutrientes del océano.


Artículo científico:  Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source


Reference: Mak A. Saito, Abigail E. Noble, Alessandro Tagliabue, Tyler J. Goepfert, Carl H. Lamborg, William J. Jenkins.Nature Geoscience, 2013; DOI: 10.1038/ngeo1893

jueves, 22 de agosto de 2013

GESTOS Y PALABRAS.PALABRAS Y GESTOS.

Reproduzco este vídeo, más que por la noticia en sí, por el mensaje breve, claro, directo y sencillo que el Papa Francisco dirige a estos chavales japoneses.
Mucha "miga" en pocas palabras.

HUMANIDAD, DE NUEVO

Reproduzco, aunque extenso, este artículo por su actualidad pero, sobre todo, por lo trágico y por la necesidad de respuesta de todo tipo.
"Llega una nueva oleada de inmigrantes en balsas de juguete"

José Luis Pinilla: "Donde ya no llegan las palabras...siempre llegarán las lágrimas"

"Cerca de 200 recogidos. ¿Cuántos están a la espera? ¿Cuántos son emigrantes de deseo?"   


Los hermanos más débiles de la familia humana se han hartado de llorar y de tener el corazón frío

 


Aunque estemos de vacaciones. O precisamente por eso, cuando las voces públicas parecen más apagadas y no hablan más que de sus preocupaciones "personales", es necesario seguir levantando la voz porque el corazón se ahoga ante las noticias de las nuevas llegadas de emigrantes.
En balsas de juguete (aunque uno no sabe si los auténticos juguetes del viento son las personas que en ellas se embarcan) llega una nueva oleada de inmigrantes. Muchos irán desde el mar a seguir bregando en los CIES abarrotados de Algeciras y Tarifa. ¿No hay otras alternativas?
Están llamando a la puerta preguntandonos como recordaba recientemente el Papa en Lampedusa "Donde está tu hermano? El mismo Papa de la bondad nos invitaba a pedir al Señor "la gracia de llorar sobre nuestra indiferencia, sobre la crueldad que hay en el mundo, en nosotros, también en aquellos que en el anonimato toman decisiones socio-económicas que abren el camino a dramas como este. ¿Quién ha llorado? ¿Quién ha llorado? ¿Quién ha llorado hoy en el mundo?"
¿Quién podrá responder esas preguntas? Lloremos por lo menos. Donde ya no llegan las palabras... siempre llegarán las lágrimas. Dice Benedetti que la luna cuando perdió su gran amor "tejió con sus innumerables lágrimas un manto que le arrancara el frío que vino a habitarle el alma, pero ese frío era tan insondable como el tiempo, y nunca desapareció, más aun, se convirtió en compañero eterno de su andar".
Porque las lágrimas expresan una patética moral que se indigna y sufre, y que es lo mínimo a expresar desde nuestra condición humana; "No es despreciable, pero sólo es el comienzo, dice el buen teólogo J. Ignacio Calleja, profesor de Moral Social en la Facultad de Teología de Vitoria-Gasteiz, que continúa así: "Esto daría para una reflexión con muchas claves y responsabilidades, pensando en sus países y en los nuestros, en sus vidas y en nuestros modos de vida. Si estos pueblos y gentes los aceptamos como iguales a nosotros, si aceptamos la igualdad de las personas y los pueblos en la única familia humana , ¡pienso moralmente!, y si pensamos en los modos de vida y consumo de toda la humanidad desde la satisfacción de las necesidades más básicas de todos, ¡pienso económicamente!, hay que cuestionar a fondo "modos de vida" y "principios jurídicos de derecho internacional" que los Estados, y sus ciudadanos más "desarrollados", utilizamos con ventaja y con la mejor conciencia".
Aunque "esos modos de vida y los principios jurídicos de derecho internacional" que los protegen produzcan crisis tan dolorosas y corrupciones tan lacerantes como las actuales. Quizás - perdonadme la ironía- los últimos 200 emigrantes también vienen buscando nuestra crisis y nuestra corrupción. ¿Será porque huyen de otras peores?
La compasión ciertamente es la puerta primera que moviliza nuestra acción. La que nunca deberá dejar de ejercerse. Yo también siento mi corazón inundado de lágrimas. Y busco palabras que vayan más allá. Por ejemplo las que ya decía Juan Pablo II en 1999: «Tanto de manera individual como en las comunidades parroquiales, asociaciones y movimientos, los cristianos no pueden renunciar a tomar posición en favor de las personas marginadas o abandonadas. Deben participar en el debate de la inmigración formulando propuestas con el fin de abrir perspectivas seguras que puedan realizarse también en el ámbito político. La simple denuncia del racismo o de la xenofobia no es suficiente»
La simple denuncia es insuficiente. Así de claro. Son cerca de 200 emigrantes los que han sido recogidos en nuestras costas en el segundo fin de semana agosto. ¿Cuantos en las norteafricanas? ¿Cuantos están a la espera? ¿Cuántos son emigrantes de deseo?
Dicen que la armada inglesa acompañada por alguna fragata española se dirige a Gibraltar, y de allí al continente africano, con intención de reforzar la ayuda para estos hermanos nuestros.
Dicen que son solo buques-hospital los que han zarpado desde el puerto de Portsmouth y que en los otros barcos, italianos, portugueses y españoles, "de las espadas han forjado arados y de las lanzas, podaderas".
Los hermanos más débiles de la familia humana se han hartado de llorar y de tener el corazón frío

domingo, 18 de agosto de 2013

LAS PRISAS

De nuevo acudo al testimonio de María de Villota pues, estoy convencido, nos puede dar muchas claves a todos para la vida desde su trágica experiencia vivida.
Hablando de lo que sufrió dice, ante la pregunta del entrevistador "¿Se ve el doble con la mitad de visión? que: "...No sólo no ves más, sino que sientes más...Estás vivo. Eres un elegido. Sigues aquí. Ahora me paro más, soy mejor persona...A mí la competición me deshumanizó: iba tan rápido que no me paraba a mirar"

viernes, 16 de agosto de 2013

LOS 200

La noticia está saliendo durante unos días en la prensa.
Es cierto que, por ejemplo, muchos de nuestros Equipos de fútbol están en las primeras líneas a nivel mundial y, ciertamente, es un orgullo.
Pero la noticia lo que subraya es que ninguna Universidad Española se encuentra entre las 200 primeras mundiales. Sin enfrentar unos temas con otros lo duro es que, en materia de Educación dejamos aún mucho que desear pero, aún más llamativo es que es una cuestión que no preocupa.....

jueves, 15 de agosto de 2013

PREFERENCIAS

"PREFIERO HABER PERDIDO EL OJO QUE LA SONRISA" (María de Villota)

miércoles, 14 de agosto de 2013

¿TODOS IGUALES?

Declaraciones de Mireia Belmonte, la mejor nadadora española de la historia:
"Importa más el pelo de Sergio Ramos que mi récord"
Y lo peor es que es cierto que no todos los deportes son igualmente tratados y considerados.....

lunes, 12 de agosto de 2013

Algunos conceptos relacionados con el Teorema de Gödel

1. El Programa de Hilbert

Los teoremas de Gödel, publicados en 1931, nacieron en el contexto de una larga polémica sobre los fundamentos de la matemática cuyos orígenes se remontan a la década de 1870 con el descubrimiento por parte de Georg Cantor de los cardinales transfinitos, y que se había intensificado a partir de 1902 tras el hallazgo de la paradoja de Russell.

El campo de batalla de esta polémica era nada menos que el infinito. La escuela constructivista, encabezada por L.E.J. Brouwer, sostenía que la introducción del infinito en acto en matemática era absurda e injustificada y que la teoría de los transfinitos de Cantor era solamente un juego de palabras sin sentido. Los únicos objetos matemáticos válidos, sostenía esta escuela, son aquellos que se pueden construir mecánicamente en una cantidad finita de pasos.

Hacia 1920, con el objetivo fundamental de defender a la teoría de Cantor (y bajo el lema “Del paraíso que Cantor creó para nosotros nadie podrá expulsarnos”), interviene en la polémica el matemático alemán David Hilbert quien, en una serie de artículos publicados a lo largo de siguientes diez años, propone el que hoy es conocido como el Programa de Hilbert y que, en esencia, quitaba la exigencia de finitud y de constructividad de los objetos matemáticos para desplazarla a los razonamientos matemáticos.

Con más precisión, Hilbert proponía la creación de una nueva ciencia a la que él llamaba metamatemática. Esta ciencia tendría como objetivo el verificar la validez de los razonamientos matemáticos. Para evitar polémicas, y para asegurarse de que no surgieran paradojas, esta ciencia sería puramente sintáctica: la metamatemática trataría a los enunciados y a los razonamientos matemáticos como si fueran simples secuencias de símbolos sin significado a los que manipularía mecánicamente.

Se ha dicho en muchos textos de divulgación que el Programa de Hilbert proponía reducir la matemática a un juego de símbolos carente de significado; se ha dicho también que para Hilbert el concepto de "verdad matemática" carecía de sentido. Nada de esto es correcto. Hilbert era ante todo un investigador matemático, el mejor de su tiempo, por lo que es inimaginable que pudiera pensar de esa manera. Hilbert atribuía la reducción a simples manipulaciones de símbolos a la metamatemática, no a la matemática en sí. Los matemáticos, para Hilbert, seguirían trabajando como siempre han hecho a nivel semántico, un nivel lleno de significados. El matemático, en el día a día, trabaja, crea, conjetura y demuestra, como si lo que tuviera entre manos fueran objetos reales. La metamatemática, según la idea de Hilbert, trabajaría a nivel sintáctico y sólo proveería los métodos para verificar si los razonamientos que el matemático ha hecho son correctos.
En concreto, el Programa de Hilbert proponía dar un conjunto de axiomas para la aritmética que cumpliera las siguientes cuatro condiciones:

a) El sistema debía ser consistente; es decir, no debía existir un enunciado P tal que P y su negación fueran simultáneamente demostrables.
b) La validez de cualquier demostración debía ser verificable por manipulaciones mecánicas en una cantidad finita de pasos. Traducida a un lenguaje moderno, esta condición dice que debía ser posible, al menos en teoría, programar una computadora de tal modo que fuese capaz de verificar la validez de los razonamientos matemáticos,
c) Dado cualquier enunciado P, o bien él o bien su negación debía ser demostrable.
d) La consistencia de los axiomas debía ser verificable mecánicamente en una cantidad finita de pasos.

Como se ha dicho, Hilbert fue dando forma a este programa a lo largo de la década de 1920; sin embargo, en 1931 los teoremas de Gödel demostraron que esas cuatro condiciones no pueden cumplirse a la vez.

Concretamente, el primer teorema de incompletitud de Gödel dice que si se cumplen las condiciones a) y b) entonces necesariamente la condición c) falla. Por su parte, el llamado segundo teorema de incompletitud de Gödel, del que no nos ocuparemos aquí, prueba que si se cumplen las condicoiones a) y b) entonces es la condición d) la que falla.

2. La numeración de Gödel

En lo que sigue, expondremos las ideas principales de la demostración del primer teorema de Gödel. Supongamos, entonces, que se ha dado un conjunto de axiomas para la aritmética que cumple las condiciones a) y b). En realidad, a los efectos de nuestro desarrollo, y para evitar tecnicismos, supondremos que todos los axiomas propuestos son enunciados verdaderos.

Estrictamente hablando, esta última hipótesis no es necesaria para demostrar el primer teorema de Gödel, sin embargo, por una parte, es obvio que se trata de una suposición perfectamente razonable (nadie propondría seriamente basar la aritmética en axiomas falsos). Por otra parte, además, suponer que los axiomas son enunciados verdaderos implica inmediatamente que estos satisfacen la condición a); en efecto, si todos los axiomas son verdaderos entonces los teoremas que se deducen de ellos son también enunciados verdaderos. En otras palabras, es imposible demostrar un enunciado falso, por lo que, tal como pide la condición a), nunca sucederá que exista un enunciado P tal que él y su negación sean a la vez demostrables.

Como se ha dicho más arriba, supondremos también que se cumple la condición b), es decir, que la validez de toda demostración basada en los axiomas elegidos es verificable algorítmicamente en una cantidad finita de pasos.

El comienzo de la demostración del primer teorema de Gödel consiste en asignar a cada enunciado aritmético un número natural, llamado el número de Gödel de ese enunciado. Por ejemplo, al enunciado “2 es un número par” podría corresponderle el número de Gödel 23.627; o al enunciado “22 es un número primo” podría corresponderle el número de Gödel 11.705.

Debemos hacer aquí varias aclaraciones. La primera es que el enunciado “22 es un número primo” es evidentemente falso; en efecto, Gödel le asigna un número a cada enunciado aritmético, tanto a los verdaderos como a los falsos. La segunda aclaración, muy importante, es que la asignación de los números de Gödel no se hace al azar; los ejemplos mostrados más arriba son puramente hipotéticos y tienen el único objetivo de ejemplificar la idea de que a cada enunciado se le asigna un número. Estos ejemplos no deben ser tomados de ninguna manera como representativos del modo en que los números de Gödel son asignados. En realidad, antes de hacer la asignación cada enunciado debe ser traducido a un lenguaje formal estrictamente definido; sólo después de que esa traducción se ha completado el número de Gödel correspondiente al enunciado en cuestión es calculado mediante un procedimiento algorítmico rigurosamente especificado. En la práctica, de hecho, el número de Gödel de cualquier enunciado, aun de los más simples, tiene siempre una gran cantidad de cifras.

Una vez que se ha asignado un número de Gödel a cada enunciado, queda bien definido el conjunto de los números de Gödel de todos los enunciados que son demostrables a partir de los axiomas propuestos. El grueso de la demostración del primer teorema de Gödel consiste en probar que ese conjunto de números puede definirse apelando únicamente a propiedades aritméticas (que son las propiedades referidas a los números naturales que son expresables en términos de la suma, el producto y las operaciones lógicas usuales). Es decir, la propiedad lógica “Es el número de Gödel de un enunciado demostrable” puede traducirse a una propiedad puramente aritmética (aunque no siempre lo explicitemos, debe entenderse en todo momento que “demostrable” significa “demostrable a partir de los axiomas aritméticos propuestos”). Por ejemplo, podría suceder que los números de Gödel de los enunciados demostrables sean exactamente los números primos terminados en 7. Una vez más debemos aclarar que este último ejemplo es puramente hipotético y sólo tiene la intención de mostrar lo que entendemos por “propiedad aritmética”. En la práctica, la propiedad aritmética que define a los números de Gödel de los enunciados que son demostrables a partir de un cierto conjunto de axiomas es siempre muy compleja de enunciar.

Es importante destacar también que es en este punto de la demostración donde entra en juego la hipótesis b). En efecto, puede probarse que si se admiten métodos de demostración que no son verificables algorítmicamente  entonces no es necesariamente cierto que la propiedad de ser el código de Gödel de un enunciado demostrable sea expresable mediante propiedades aritméticas.

3. El método de autorreferencia

Planteemos un nuevo ejemplo hipotético; imaginemos que al enunciado “23.409 es un número par” le correspondiera el número de Gödel 23.409. Podríamos entonces parafrasear este enunciado como diciendo, falsamente, que “Mi número de Gödel es par”.

Ahora bien ¿es razonable suponer que existe un enunciado que se refiera a su propio número de Gödel? En realidad sí es razonable, porque Gödel probó que, dada cualquier propiedad aritmética, como por ejemplo “Es un número par” o “Es un número primo”, siempre existe un enunciado aritmético que puede parafrasearse como diciendo que su propio número de Gödel cumple esa propiedad. Es decir, existe necesariamente un número n tal que al enunciado “n es par” le corresponde el número de Gödel n y un número m tal que al enunciado “m es primo” le corresponde el número de Gödel m. En otras palabras, Gödel mostró un método para obtener enunciados autorreferentes.

Dijimos antes que la propiedad “Es el número de Gödel de un enunciado demostrable” es traducible a una propiedad aritmética; de la misma forma, también es traducible la propiedad “No es el número de Gödel de un enunciado demostrable” (en el contexto del ejemplo hipotético dado más arriba, “No es el número de Gödel de un enunciado demostrable” equivaldría a “No es cierto que es un número primo terminado en 7”).
En consecuencia, por lo dicho más arriba, existe necesariamente un número k tal que al enunciado “k no el número de Gödel de un enunciado demostrable” (que en el ejemplo hipotético equivale a “No es cierto que k es un número primo terminado en 7”) le corresponde el número k. En otras palabras, ese enunciado dice, “Mi número de Gödel no corresponde a un enunciado demostrable” o, dicho más simplemente, el enunciado afirma “Yo no soy demostrable”. Veamos a continuación que este enunciado es verdadero, pero no es demostrable a partir de los axiomas propuestos.

Para probar que “Yo no soy demostrable” es verdadero pero no demostrable supongamos, en primer lugar, que fuera falso. En ese caso, lo que enuncia es incorrecto, por lo que sí sería demostrable. Es decir, sería falso y demostrable a la vez, pero esto es imposible porque los axiomas son enunciados verdaderos.

Entonces “Yo no soy demostrable” es necesariamente verdadero, pero entonces lo que enuncia es verdad y, por lo tanto, es verdadero y no demostrable.

Notemos que esto implica, tal como queríamos probar, que la condición c) falla. En efecto, el enunciado aritmético que expresa que “Yo no soy demostrable” no es demostrable, pero tampoco lo es su negación, ya que esta negación es un enunciado falso, y si los axiomas son enunciados verdaderos entonces ningún enunciado falso puede ser demostrable. Hemos probado así que, contradiciendo lo que pide condición c), existe siempre un enunciado P tal que ni él, ni su negación, son demostrables. De este modo, termina nuestra exposición de las ideas centrales de la demostración del primer teorema de Gödel.

4. Conclusión

El programa de Hilbert proponía que se diera un conjunto de axiomas aritméticos que cumpliera las condiciones a), b), c) y d) enunciadas más arriba. La condición a) puede parafrasearse diciendo que el sistema no debe permitir que se demuestren enunciados falsos, en otras palabras, los axiomas nunca deben conducir a una paradoja; la condición d) pide, además, que la validez de la condición a) sea verificable de un modo claro y objetivo. La condición b), por su parte, pide que también exista un método claro, objetivo y concreto para verificar la validez de los razonamientos matemáticos. La condición c), finalmente, pide esencialmente que todas las verdades aritméticas sean demostrables.

Los teoremas de Gödel prueban que estas cuatro condiciones no pueden cumplirse simultáneamente. En particular, el primer teorema demuestra que si sólo admitimos razonamientos cuya validez sea verificable objetivamente entonces siempre habrá verdades matemáticas que no podamos demostrar. En otras palabras, tenemos que elegir entre la certeza absoluta de que no cometeremos errores y la certeza absoluta de que podremos resolver todos los problemas matemáticos. Tenemos que elegir, dice Gödel, entre una de esas dos certezas porque nunca podemos tener ambas al mismo tiempo.

RUTAS Y AMIGOS

De mi buen amigo Jose Mª , compartiendo totalmente lo que escribe y regalándotelo:
 
   
    
"Hay cosas en nuestra vida que, de alguna forma, son reflejo de Dios. Tal vez no lo vemos tal y como es, pues siempre es mayor que lo que percibimos. Pero hay algunas formas de vivir, de ser, de estar y de querer, que nos hablan de Dios… Y la amistad es una de ellas. Me alegro de tener gente cercana. Vidas que se cruzan con la mía. Rutas que hemos recorrido juntos (al menos por un trecho), por senderos que a veces se separan y luego se entrecruzan de nuevo. Me siento afortunado por que hay nombres que forman parte de mi vida, no como un apunte en una agenda, sino como una historia compartida. Hoy sé que no se puede mitificar la amistad, que a veces es sublime y a veces horrible (o ambas). Sé que no te libra de las batallas (a veces las provoca), y casi siempre se construye desde lo más cotidiano. No te libra de momentos de soledad. Pero es importante darte cuenta de quiénes son tus gentes."

domingo, 11 de agosto de 2013

SANTOS, HOY

El papa Francisco acaba de recitar:

"Necesitamos santos sin velo, sin sotana. Necesitamos santos de jeans y zapatillas.

Necesitamos santos que vayan al cine, escuchen musica y paseen con sus amigos.


Necesitamos santos que coloquen a Dios en primer lugar y que sobresalgan en la Universidad.

Necesitam
os santos que busquen tiempo cada dia para rezar y que sepan enamorar en la pureza y castidad, o que consagren su castidad.


Necesitamos santos modernos, santos del siglo XXI con una espiritualidad insertada en nuestro tiempo.

Necesitamos santos comprometidos con los pobres y los necesarios cambios sociales.

Necesitamos santos que vivan en el mundo, se santifiquen en el mundo y que no tengan miedo de vivir en el mundo.

Necesitamos santos que tomen Coca Cola y coman hot-dogs, que sean internautas, que escuchen iPod.

Necesitamos santos que amen la Eucaristia y que no tengan vergüenza de tomar una cerveza o comer pizza el fin de semana con los amigos.

Necesitamos santos a los que les guste el cine, el teatro, la musica, la danza, el deporte.

Necesitamos santos sociables, abiertos, normales, amigos, alegres, compañeros.

Necesitamos santos que esten en el mundo y que sepan saborear las cosas puras y buenas del mundo, pero sin ser mundanos".


Esos tenemos que ser nosotros!!!
 

jueves, 8 de agosto de 2013

GLOBALIZACIÓN

"LA GLOBALIZACIÓN DE LA INDIFERENCIA NOS HA QUITADO LA CAPACIDAD DE LLORAR" (Papa Francisco)

miércoles, 7 de agosto de 2013

PERSPECTIVAS

 
Siempre nuestra perspectiva parece que da otro toque diferente a la realidad, pero se me puede olvidar que, enfrente, puedo tener a otra persona que desde su perspectiva ve la misma realidad con otro color....¡Espero poder tener esto siempre y cada vez más presente en toda
la vida!

martes, 6 de agosto de 2013

PASOS Y HUELLAS

" LA VIDA NO CUENTA LOS PASOS QUE HAS DADO, SINO LAS HUELLAS QUE HAS DEJADO"
(Marta Salazar)

lunes, 5 de agosto de 2013

TERNURA

Quizás no sea mala idea para explicar cuestiones....
Para los que sí podéis tener momentos con vuestros abuelos.

domingo, 4 de agosto de 2013

HORIZONTES

A pesar de todo y en momentos difíciles, danos, Señor, mirada, corazón y manos limpias con un horizonte grande en nuestras vidas!!!

jueves, 1 de agosto de 2013

ÍDOLOS

Nos tienen acostumbrados (de unos y otros super-equipos indistintamente) a pasear con altanería, conducir los mejores coches, vestir como top models, viajar como auténticos líderes, etc.o pero me llamó, poderosamente, la atención cómo aparecían, recientemente, los jugadores del BarÇa en la despedida de su entrenador.
Es cierto que la motivación de dicha despedida es bastante triste pero adonde me llevó la fotografía es a reflexionar en cómo la salud, la muerte, la vida, lo fundamental...no se puede comprar ni siquiera con ningún super contrato blindadode los que tienen estos jóvenes en su haber y, aunque parezca que "dominamos" el mundo, en un instante eso que parecía que dominábamos es lo que, precisamente, nos aplasta.
¿Verdaderamente estos son nuestros íd
olos?