Documental : Un año en la vida de la ballena de Groenlandia

Un año en la vida de la ballena de Groenlandia
Un bonito documental de 24´realizada por los nativos de Alaska, científicos marinos y el Museo del Norte de la Universidad de Alaska.


 


Las ballenas de Groenlandia, ballenas boreales (Balaena mysticetus) son las únicas ballenas que pasan sus vidas enteras en las aguas árticas. Vive en la región circumpolar del norte, a menudo en aguas poco profundas. Sus migraciones son cortas, y se realizan en sentido contrario a la formación y el movimiento del hielo: al norte en verano, al sur en invierno. En el Atlántico habita desde el mar de Groenlandia hasta el norte de la bahía de Hudson. En el Pacífico, vive junto a las costas de Alaska y de Rusia, en los mares de Bering y Chukchi, hasta el mar de Beaufort.

Interacción de los organismos marinos del Mediterráneo con basuras marinas, especialmente con plásticos




Investigadoras del Centro Oceanográfico de Baleares del Instituto Español de Oceanografía (IEO) han publicado una revisión bibliográfica en la que analizan trabajos científicos que estudian la interacción de los organismos marinos del Mediterráneo con basuras marinas, especialmente con plásticos.

La revisión se ha centrado en la identificación de los grupos taxonómicos afectados, las estrategias alimentarias que provocan la ingesta y asfixia de muchas especies y los principales hábitats donde aparece basura marina en toda la cuenca del Mediterráneo. 

Se han contabilizado un total de 79 estudios desde 1986 que describen algún tipo de afectación por basura marina en organismos marinos. Estos son cetáceos, tortugas, peces, invertebrados, algas y plantas marinas de distintos hábitats comprendidos en un rango batimétrico de 0 a 850 metros de profundidad. 

El 41% de los documentos consultados se centran en el estudio de la basura marina y los cetáceos, mientras que el 24% estudia los peces pelágicos y demersales. Un 21% las tortugas marinas y el 14% restante analiza los invertebrados.

En el caso de los cetáceos, la mitad de las especies estudiadas había ingerido o presentaba asfixia por algún tipo de basura marina. 

También se analizaron las especies en función a su categoría en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN). En este sentido, el 73% de las especies clasificadas como vulnerables (VU) y el 41% de las clasificadas como en peligro de extinción (EN) que se analizaron en estos estudios presentaron interacción con basuras marinas. 

Este estudio se ha realizado en el marco del grupo de trabajo de expertos del CIESM: Marine litter in the Mediterranean and Black Sea reunidos en Triana, Albania, entre el 18 y el 21 de junio de 2014 y que contó con la participación de la investigadora del IEO Salud Deudero, Co-chair of the CIESM Marine Ecosystems and Living Resources Committee.

Referencia bibliográfica: 
Deudero, S. and Alomar, C. 2014. Revising interactions of plastics with marine biota: evidence from the Mediterranean in Marine litter in the Mediterranean and Black Seas. CIESM Workshop Monograph n° 46 [F. Briand, ed.], 180 p., CIESM Publisher, Monaco. 


Marine litter in the Mediterranean and Black Seas

Florecimiento de fitoplancton cerca de las islas Pribilof de Alaska



Image Credit: NASA/Landsat 8

El Operational Land Imager (OLI) en el satélite Landsat 8 capturó esta vista de un florecimiento de fitoplancton cerca de las islas Pribilof de Alaska el 22 de septiembre de 2014. Las Pribilofs están rodeadas de aguas ricas en nutrientes en el mar de Bering. El sombreado azul verde y luz lechoso del agua indica la presencia de grandes poblaciones de fitoplancton microscópico - en su mayoría cocolitóforos - que tienen escamas de calcita que aparecen en blanco en las imágenes de satélite. Tal fitoplancton forma la base de un hábitat tremendamente productivo para peces y aves.

Los florecimientos en el Mar de Bering aumentan significativamente en primavera, después de la desaparición de la cubierta de hielo de invierno y los nutrientes en el agua fresca son abundantes cerca de la superficie del océano. Las poblaciones de fitoplancton se desploman en verano cuando el agua se calienta, los nutrientes de la superficie se agotan por las floraciones, y los organismos similares a las plantas se agotan por el pastoreo peces, zooplancton, y otras especies marinas. En el otoño, las tormentas pueden remover nutrientes a la superficie y las aguas más frías aportan mejores condiciones para la floración.

 Fuente: Coloring the Sea Around the Pribilof Islands

Científicos rastrearán a las ballenas de la Antártida con “sonoboyas”

The Blue Whale (Balaenoptera musculus). Photo from National Oceanic and Atmospheric Administration photo library




The Blue Whale (Balaenoptera musculus). Photo from National Oceanic and Atmospheric Administration photo library

Un grupo de científicos de Australia y Nueva Zelanda colocarán sonoboyas en las aguas antárticas para rastrear a las escurridizas ballenas azules(Balaenoptera musculus), informan hoy fuentes científicas.

"Buscar a las ballenas azules es como tratar de hallar una aguja en un pajar, pero tenemos un secreto, las vamos a escuchar", dijo el jefe de la expedición, Richard O'Driscoll, del Instituto Nacional del Agua e Investigación Atmosférica de Nueva Zelanda, que realiza este estudio con la División Australiana Antártica.
Los científicos, que se embarcarán este miércoles en un viaje de seis semanas a bordo del barco científico Tangaroa que se dirigirá a las islas Balleny, en el océano antártico, para estudiar además de las ballenas azules, a lasballenas jorobadas (Megaptera novaeangliae) y las austromerluzas antárticas (Dissostichus mawsoni).
"Las islas Balleny son conocidas como una zona clave de alimentación de las ballenas jorobadas, pero se desconoce qué comen. Por otro lado, a pesar de que la caza comercial de ballena casi elimina a las ballenas azules comienzan a aparecer señales de que están volviendo (al lugar)", agregó O'Driscoll.
Para este estudio, los científicos, que después de sus trabajos en las Balleny, colocarán sonoboyas para captar los sonidos de baja frecuencia que emiten las ballenas, según un comunicado de la División Australiana Antártica.
"El cruce de las referencias de las múltiples sonoboyas señalarán con precisión la localización de las ballenas", explicó por su lado el científico australiano Mike Double, quien espera desvelar por qué las ballenas azules se han sumado a estas áreas de alimentación en la Antártida.
Los científicos también estudiarán los caladeros de la austromerluza en el Mar Ross para estudiar la abundancia y distribución de sus principales presas e instalará equipos sonares en la bahía Terra Nova, que concentra una gran cantidad de larvas de diablillos antárticos (Pleuragramma antarcticum), un pez que forma parte de la dieta de aves, peces, ballenas y otros animales marinos.
"Cuando desaparece el hielo en la primavera se ve una gran cantidad de larvas de diablillos pero no se ven a los adultos y queremos saber si éstos se desplazan durante el invierno y ponen sus huevos en ese lugar o los huevos son arrastrados desde otro lugar", comentó O'Driscoll.

Declive de las algas Gelidium en la Costa Vasca, investigadores documentan en un vídeo los drásticos cambios del paisaje submarino


Declive de las algas Gelidium en la Costa Vasca from UPV/EHU on Vimeo.


La subida de la temperatura del agua, el aumento de la radiación solar, la disminución de nutrientes y los grandes temporales, son las principales causas de que en los últimos años se esté produciendo en la costa vasca un considerable descenso en las poblaciones del alga roja Gelidium corneum. Según los datos recogidos por el Grupo de Investigación Bentos Marino de la UPV/EHU, dirigido por José María Gorostiaga, del Departamento de Biología Vegetal y Ecología de la Facultad de Ciencia y Tecnología de la UPV/EHU, la presencia de esta alga en numerosas localidades del litoral vasco se ha reducido a la mitad y en los casos más extremos ha pasado de un 80% a un 5%.


Para ilustrar los cambios que se están produciendo en la vegetación marina de la costa vasca en las dos últimas décadas, este grupo de investigación ha elaborado un vídeo (7 minutos) en el que se muestra de forma esclarecedora la vulnerabilidad del ecosistema costero ante las recientes alteraciones climáticas.


"Se están dando cambios dramáticos en nuestro paisaje submarino; donde antes había extensas praderas de algas, ahora hay amplios espacios de apariencia desértica. Estamos sufriendo una importante pérdida de productividad que, además de afectar a la biodiversidad marina, tiene consecuencias negativas en el ámbito visual, paisajístico e, incluso, cultural", asegura Gorostiaga.


Alteraciones climáticas


De tamaño grande, color rojizo y que crece en las zonas más batidas por las olas, el alga Gelidium corneum juega un papel esencial en el funcionamiento del ecosistema costero. Actúa como refugio, lugar para la puesta de huevos y hogar de muchos animales y algas. La Gelidium necesita unas condiciones muy particulares para su supervivencia. Sin embargo, según ha constatado el Grupo de Investigación de la UPV/EHU, en las últimas décadas las condiciones climáticas han variado notablemente. El agua ha sufrido un calentamiento en las tres últimas décadas con un incremento promedio en agosto de 1ºC, pasando de 22ºC a 23ºC. Además, se han dado veranos especialmente cálidos con registros de temperatura del agua no alcanzados con anterioridad (un máximo de 26,2ºC en agosto de 2003). La radiación solar ha aumentado, incrementando los niveles de estrés de las algas que adoptan colores amarillos e incluso blancos en vez de su color rojo oscuro natural, y el nivel de nutrientesL de las aguas ha disminuido, debido a los cambios en el afloramiento y a la escasez de aguas procedentes de los ríos. A estas alteraciones hay que añadirles otros factores como el aumento potencial del herbivorismo, tanto de especies locales como de otras de aparición reciente y el incremento de la frecuencia y la intensidad de las tormentas, que tienen un mayor efecto de 'siega' ante el actual debilitamiento de estas algas. Todo ello está haciendo que las rojas praderas de Gelidium que había hace dos décadas hayan desaparecido en muchas zonas de la costa vasca y, donde aún permanecen, se encuentran deterioradas y con síntomas de estrés.


El lugar donde antes había este tipo de algas está siendo ocupado parcialmente por especies del género Corallina, más pequeñas y duras, de naturaleza calcárea y color rosado. Son especies típicas de ambientes bien iluminados y adaptadas a vivir en aguas más cálidas que la Gelidium. El cambio de las condiciones ambientales y la sustitución de las algas dominantes de la vegetación están propiciando la aparición de nuevas especies. La investigación revela que en 1991 la biodiversidad de la costa vasca contaba con un total de 90 especies inventariadas y, en 2013, ese número aumentó considerablemente, hasta llegar a las 116 especies.


"Que haya más especies no tiene por qué ser positivo. Lo que es positivo en un ecosistema es que se mantengan las funciones y los procesos ecológicos. Es decir, que se mantengan la productividad y la biodiversidad, pero no sólo en términos de número de especies, sino también en términos de diversidad genética, funcional… Y, de hecho, las nuevas especies que han entrado a nuestro litoral aportan poca biomasa ya que son pequeñas y de morfología muy simple. Además, son efímeras y tampoco ofrecen la estructura espacial necesaria para dar refugio a numerosas especies de peces e invertebrados", señala Isabel Díez, miembro del Grupo de Investigación.


Mantener la riqueza del ecosistema


Este retroceso de la biomasa del alga Gelidium en la costa vasca no se puede parar, aunque sí aminorar, tomando las medidas necesarias parar frenar el cambio climático. De todas formas, en opinión de José María Gorostiaga, "el daño ya está hecho, porque las últimas estimaciones aseguran que la inercia del cambio climático es imparable, ya que suponiendo que se reduzcan las emisiones como medida correctora, se espera, como mal menor,  que a finales de este siglo la temperatura del aire haya aumentado en 2º ó 2,5º C. Y si no se toman medidas suficientes, el aumento sería de unos 4,5ºC".

Llegados a este punto, los investigadores aseguran que lo importante ahora es mantener las funciones del ecosistema y la diversidad biológica de la costa vasca en su sentido global, independientemente de las especies que permanezcan o que desaparezcan. Para ello, es imprescindible continuar con las investigaciones para conocer los procesos de pérdida y de sustitución de unas especies por otras y cuantificar las pérdidas que eso conlleva en términos de los bienes y servicios ecosistémicos que las macroalgas proporcionan a la sociedad, así como la evaluación de medidas de mitigación y restauración.

Fuente: Las praderas de algas Gelidium de la costa vasca, en grave declive a causa del cambio climático