Un problema de probabilidades

(Esta entrada es la participación de El Topo Lógico en el Carnaval de Matemáticas.)

Imaginemos el siguiente juego de azar: se le presentan a un jugador n cajas cerradas, cada una de las cuales contiene una bola marcada con un número entre 1 a n (cajas diferentes contienen números diferentes). Las cajas son perfectamente iguales y es imposible determinar por su aspecto el contenido de cada una.

El jugador anota en la tapa de cada caja un número de 1 a n. No es obligatorio que anote números diferentes. Puede, por ejemplo, anotar un 1 en todas las cajas.

Una vez hechas las anotaciones, se destapan las cajas. El jugador se anota entonces un punto por cada caja en la que el número anotado en la tapa coincida con el número de la bola contenida.

Por ejemplo, si el jugador anota un 1 en todas las cajas entonces ganará exactamente un punto.

Preguntas:

1) Si n es par y el jugador anota un 1 en la mitad de las cajas y un 2 en la otra mitad ¿cuál es su ganancia esperada?

2) ¿Cuál es la estrategia óptima para el jugador? Es decir ¿cuál es la estrategia para la cual la ganancia esperada del jugador es la máxima posible?